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T U R B U L E N T  I S E N T R O P I C  F L O W S  

V. A. Bubnov UDC 551.51 

Based  the hypothesis  that there is a direct proport ional  relat ionship between turbulent  s t resses  a n d  pairwise 

products  o f  the averaged velocity components ,  isentropic f lows  are studied. 

In a number  of the works of the present author (for example, [1 ]), in order  to express the turbulent  stress 

tensor ( - p v ) v '  k) in terms of the averaged velocity field, a hypothesis is suggested according to which turbulent  

stresses are proportional to pairwise products of the average velocity components of turbulent  motion: 

- pv)v'k = fl p-~i v k ,  j ,  k = 1 , 2 , 3 ,  (1) 

where the parameter  fl characterizes the intensity of pulsating motions. 

If, in the well-known Reynolds  equations,  we use formulas (1) for averaged velocities, then for an 

incompressible fluid we will have 

a t  + (1 - fl) ( V ' V )  V = - grad p + v0 V2 V.  (2) 

Here V is the averaged motion velocity vector; v o is the effective viscosity, with the remaining notat ion being 

conventional. In [2, 3 ], calculating formulas are given forf l  and vo in application to some classes of hydrodynamic  

flows. 

Let us denote the speed of a liquid particle moving along a streamline by V s. According to the definition 

of the streamline, we have the obvious formulas 

d x -ff d y -v d z -~ 
- - = - - = l ;  - - -  - m ;  - - = - - = n ;  
as  v,  dS v, a s  v s 

V~s = u 2 - t - v 2 - t - w  2 , V s = l ~ + m - ~ + n - f f .  

Let us take note of the formulas of conversion from the derivatives with respect to x, y, z to the variable S: 

0 I 0  0 l O 0 I 0  
Ox 7 0 S "  Oy m O S '  Oz n O S '  

d 0 0 - l  O--~-+m + n - - .  
Ox ~y  Oz 

In the new variables S and t, using the well-known procedures, Eq. (2) can be rewritten as 

+ (1 - 9 )  = - ,'o-a °2v"  ° V s  

dS OS 2 Ot 
(3) 

where the complex A has the following form: 
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A = 6 -  
l -I- rt 4 l 4 -I- m 4 m _  4 4- t /4)  

~ + ~m------~ - + m2n2  ) • 

If l = m = n, then A = 0, and Eq. (3) is simplified to 

d---S + = -  Ot " 

Hereafter ,  we will consider s teady-state motions of liquid or gas, for which the latter equation has the 

integral 

i , +  n (4) 
2 P = " 

In this equation, the quantity H defines the total pressure of each e lementary  small jet in a given active section of 

the flow. To obtain the total pressure H, which is the hydrodynamic  characteristic of the entire active section a~, 

it is necessary to take averages of the values of H that belong to separate small jets. Then ,  instead of Eq. (4), we 

obtain the equality 

Q 

By integrating all the terms of this equation over the active section plane w, we will have a Bernoulli equation 

generalized for the case of turbulent  flows: 

e + (1 r d  = (s) 
p 2 

where the flow rate of the hydrodynamic  stream is denoted by W. 

In hydraulics,  the quanti ty a is called the correction of the kinetic energy of flow, and for its determinat ion 

the following formula is valid: 

1 

Equation (5) at fl = 0 was already used in solving hydraulics problems. Thus ,  it is known that in laminar  flows, in 

transition from slow to accelerated motions, the numerical values of a change from 2 to 0.5; at the same time, in 

turbulent  flows the value of a is close to unity. The  introduction of the parameter  fl into Eq. (5) expands the 

capabilities of this equation in describing the conservation law in turbulent  flows. 

For a thermally insulated flow, with the gas state equation in the C l a p e y r o n - M e n d e l e e v  form being 

satisfied, Eq. (5) becomes 

k p W 2 k Po 
k -  l p  + a ( l - f l ) ~ - -  k -  l P o "  (6) 

In Eq. (6) the subscript "0" pertains to the retarded-gas flow parameters,  while k denotes the ratio of heat capacities. 

The  gasdynamic processes will be considered to be isentropic. For these processes, the relat ionship between 

pressure and density p = cp k is valid whereas the speed of sound is determined as 

This allows one to put Eq. (6) in the form 
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2 
a2 Wa a0 (7) 

k ~  + a ( l  - / 3 )  2 - k -  1" 

The ratio between the gas-flow velocity W and the local speed of sound is called the Mach n u m b e r  M. Then ,  the 

energy equation (7) can be represented as 

TO - 1 +  a (1 -/3) (k - 1) M2. (8) 
T 2 

The  mean flow velocity W, equal to the speed of sound, will be called the mean critical velocity Wcr. From 

Eq. (7) it is easy to see that 

. .2  2 2 
Wcr = 2 + a ( l  - / 3 ) ( k -  1) aO" 

From Eq. (6) we can easily obtain 

[ 1 nO= 1 + a ( l  -fl)(k-I)M 2 
p 2 

k 

k - I  

Now we assume that M -- I and p =Pcr, after  which the latter relat ionship becomes 

k 

P0 2 + a ( l  - f l ) ( k -  1) 

In turbulent flow of liquid in a tube, the complex a ( t - / 3 )  depends  little on the molecular  v iscosi ty-based 

Reynolds number ,  and is calculated as 121 

a (1 - t3) = 0.45036 + 4.32- 10 -8  R e .  

In accordance with this relationship, 0.4504 < a (1 - /3 )  _< 0.5368 if 4.103 _< Re _< 2-106, which for air  in turn 

means 0.7394 _< Pcr/PO < 0.6998. 

T h e  complex a ( l - / 3 )  and the ratio Pcr/PO have still wider ranges of change at the places where  the flow 

either sharply expands  or contracts. In [3 ], where local resistances of the hydrodynamic  flow were  studied on the 

basis of Eq. (5), the following empirical relation was obtained for a sudden flow expansion: 

a (1 - / 3 )  = 2.6135 - 1.4891 - -  
0)~ (10) 
0) 2 " 

Here wl and  wz denote the cross-sectional areas  of the narrow and expanded  portions of the flow, respectively. It 

is also shown there that  on sudden contraction of the flow 

0)2 (11) 
a (1 - / 3 )  = 1.4075 - 0.8913 oJ--1- " 

Formulas (10) and  (11) are also applicable to air flows. Table  1 il lustrates the ranges of variat ion of the ratio 

Pcr/PO in air  flows where the indicated local resistances occur. 

Now we will consider  the problem of gas escape from a reservoir  through a nozzle, when heat  exchange 

with the environment  can be neglected due to the short dwell t ime of the gas in the nozzle. Let the pressure  in the 

interior of the reservoir  be equal to P0, the densi ty to P0, and the gas velocity in the reservoir  be neglected.  The  

gas parameters  at the nozzle exit will not be subscripted. We will make use of Eq. (6) and  solve it for the flow 

velocity: 
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TABLE 1. The  Nature  of Change in the Critical Pressure in Flows with Local Resistance 

Flow expansion Flow contraction 

co 1/co2 a (1 - f l )  from pcr / po co I ~co2 a ( 1 -fl) from pcr / pO 
Eq. (10) Eq. (11) 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

1.2733 

1.4222 

1.5711 

1.7200 

1.8689 

2.0179 

2.1668 

2.3157 

2.4646 

0.4520 

0.4164 

0.3843 

0.3553 

0.3291 

0.3053 

0.2836 

0.2639 

0.2460 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.6053 

0.6945 

0.7836 

0.8727 

0.9618 

1.0510 

1.1401 

1.2292 

1.3184 

0.6703 

0.6343 

0.6008 

0.5695 

0.5402 

0.5129 

0.4873 

0.4633 

0.4408 

k - I  

2k P0 1 - . 
W = 

,~ (I -/~) (k - I) po 

For the s teady-state  gas stream its mass flow rate is Q =pcoW or, with allowance for Eq. (12), 

(p]2/k k+i 
Wf ( 2kpo Po 

Q = v¢ ~ (1 - ~  ~ -  1) 
(13) 

In Eq. (13), w denotes the active cross-sectional area of the flow. If, in Eq. (13), we assume that a ( l - f l )  -- 1, we 

obtain the well-known S t .Venan t -Wentze l  formula. However, formula (13) has a more general character ,  since it 

contains a correction for the complex a ( l - f l )  that characterizes the local resistances in nozzles. 

To determine the maximum flow rate, we will take the derivative of the r ight-hand side of Eq. (13) with 

respect to the variable P/Po and equate it to zero. Then,  after  simple transformations,  we obtain 

Pm (k_.TT) k-1 (14) 
?go-- 

Here Pm denotes the limiting pressure at the nozzle exit. Comparing Eqs. (9) and (14), we note that Pcr ~: Pm, 

contrary to the generally accepted concepts. In order  to obtain the velocity W m, it is necessary to replace the quanti ty 

P/Po in Eq. (12) by pm/p 0 defined by formula (14). Then  we have 

1 
Win -- atrl 

q ~  (1 - fl) 

where am is the speed of sound at the pressure Pm- From this it follows that in isentropic turbulent  escape of gas 

from a reservoir the maximum flow rate occurs at an escape velocity not equal to the speed of sound. 

In the same manner,  Eq. (13) also yields a formula also for the maximum flow rate: 

k+ l  

(15) 
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Fig. 
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1. Change in the critical pressure on escape of gas from a reservoir. 

In practice in gasdynamic calculations, when the S t .Venan t -Wentze l  formula is fitted to experimental  data,  

an empirical multiplier ~ is used, called the flow-rate coefficient. This leads to the following formula,  suitable for 

calculating the flow rate of a gas on its escape from the reservoir: 

P P (16) 
E - E " 

The disadvantages of this formula are that the multiplier/1 is determined only experimental ly and that it depends 

on both the escape conditions and design features of the nozzle. 

Comparing Eqs. (13) and (16), we obtain 

~' - ~ / a  (1 - ¢ b  

Here the quantity g, is introduced instead of ~ for the convenience of fur ther  calculations. In [4 1, it is shown that 

for the design of the nozzle selected the flow-rate coefficient is not a constant value, but is a function of the flow 

cross section of the nozzle, i.e., in the process of controlling escape conditions, ~ changes from zero to infinity. The  

formulas suggested earlier for the complex a ( l - f l )  can be considered as computational schemes for the empirical 

multiplier ~ in Eq. (16) depending on the character of hydrodynamic  flows. 

Using Eq. (17), formula (9) can be rewritten as 
k 

pcr [ 2 (18) 

If a ( l - f l )  = 1, then Pcr = Pro; then from Eq. (14) for air (k-- 1.4) we have pm/PO = Pcr/PO = 0.5283. The  indicated 

value of Pcr/PO can be obtained from Eq. (18) if we assume that ~p = 1.8709. Figure 1 illustrates the behavior of 

the function Pcr/PO = f(g,) calculated according to Eq. (18). 

Now we determine the magnitude of the critical flow rate Qcr by substituting Eq. (9) into Eq. (13), af ter  

which we have 
k + l  

,/( I Qcr =c°  kPoPo 2 +cz (1  2 f l )  ( k -  1) " 

It can be easily shown that Qcr = Qm when ~, = 1.8709. 

There  is one other  interesting relation: 

k + l  

(20) 

QCr -- 
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Fig. 2. Flow-rate characteristic.  

Fig. 3. Different conditions of gas escape. 

1"2 
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I 
I 

a5 P/Po 1.o 

From Fig. 2, it follows that for air  flows the relation Qm/Qcr = f (~ )  has a min imum at ~ = 1.8709. 

Usually, theoretical calculations operate on the dimensionless flow rate  Q -- Q/Qm. A formula for calculating 

this flow rate can easily be obtained from Eqs. (13) and (15). It has the form 

k+l k+l 

(:0) 
Relation (21) de termines  the character  of air  escape from a reservoir  depending on the pressure  ratio P/PO (Fig. 

3). In Fig. 3, we will note point 2, where P/Po = Pm/PO = 0.5283, Q = 1, Q/Qcr = 1, and g, = 1.8709. Unde r  these 

conditions, when P/Po < pm/PO, gas escapes with the maximum flow rate Qm up to point 2, while downs t ream of 

it (P/Po > Pm/PO) the flow rate  decreases with an increase in the values of P/Po. This is a well-known charac te r  

of escape, but within the f ramework of the concept s tated,  this is a part icular  case, which occurs only aI g, = 1.8709. 

For fur ther  analysis  we use the formula 

W m ((k "- 1) _(k +_ 2~2)] (22) 
wcr-V r k(,+l) ) '  

which determines  the ratio of the max imum velocity of escape W m to the critical velocity Wcr. 

Now, we will consider the case where the nozzle has the generalized f low-rate coefficient ~0 < 1.8709. Let 

= 1; then from Eq. (18) we have Pcr/PO = 0.1561. We plot this value on the abscissa axis (Fig. 3) and  through 

this point we draw a straight  line parallel to the ordinate  axis up to the intersection with the curve Q = f(P/PO)- 

The point of intersection is assigned number  1. When ~p = 1, from Eq. (22) we obtain that  the m a x i m u m  velocity 

of escape Wm is smaller  than the critical one Wcr. Therefore ,  ups t ream to point 1 (0 < P/PO <-- 0.1561),  the flow 

rate is equal to the critical one, and thereaf ter  (0.1561 < P/Po < 1) it increases up to point 2 and  then decreases  

to zero. 

The  third regime of escape occurs when ~ > 1.8709. Suppose that  ~, = 4, which cor responds  to Pcr/PO = 

0.8608 (point 3 in Fig. 3). In this case, from Eq. (22) we have Wrn > Wcr- Consequent ly ,  the flow rate  of escape is 

equal to the critical one up to point 3 (0 < P/PO <- 0.8608), and then it decreases  to zero. 

Thus,  in application to turbulent  isentropic flows, a new regime of escape from point 2 to point 3 (Fig. 3) 

is determined,  which was not dealt with earlier in the available l i terature on turbulent  flows. 
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